CAMPUS: Goiabeiras

CURSO: Engenharia Mecânica

HABILITAÇÃO: Engenheiro Mecânico

OPÇÃO:

DEPARTAMENTO RESPONSÁVEL: Departamento de Engenharia Mecânica

	~		
IDENTIFICA	\sim		
TOPICITIES TON			

		IDENIII	FICAÇAU			
CÓDIGO	DISCIPLINA OU ESTÁGIO			PERIODIZAÇÃO IDEAL		
MCA 08751	Resistência dos Materiais I			4°.		
OBRIG./OPT.	PRÉ/CO/REQUISITOS			ANUAL/SEM.		
Obrig.	MATO	09574, MCA0	8711	Semestral		
CRÉDITO	CARGA	DISTRIBUIÇÃO DA CARGA HORÁRIA				
	HORÁRIA TOTAL	TEÓRICA	EXERCÍCIO	LABORATÓRIO	OUTRA	
04	60	60	00	00	00	
NÚMERO MÁXIMO DE ALUNOS POR TURMA						
AULAS TEÓRICAS	AULAS DE EXERCÍCIO	AULAS DE LABORATÓRIO		OUTRA		

00

00

OBJETIVOS (Ao término da disciplina o aluno deverá ser capaz de:)

Determinar estado de tensão em corpos sujeitos a carregamentos combinados.

Calcular tensões e deformações principais.

00

CONTEÚDO PROGRAMÁTICO (Título e descriminação das Unidades)

- 1- Problemas e métodos da resistência dos materiais;
- 2- Forças externas e esforços internos
- 3- Tensões e deformações
- 4- Tração e compressão
- 5- Torção

50

- 6- Flexão
- 7- Análise de tensões e deformações

BIBLIOGRAFIA BÁSICA

- 1. HIBBELER, R.C. Resistência dos Materiais. Ed. Pearson
- 2. BEER, Ferdinand, JOHNSTON, E. Russell. Resistência dos Materiais. Mc Graw Hill.

CRITÉRIOS DE AVALIAÇÃO DA APRENDIZAGEM

O critério de avaliação será da seguinte forma:

ra da seguinte forma:

$$MP = 0.80 * \left(\frac{P1 + P2 + P3}{3}\right) + 0.20 * SE \ge 7.0$$

 $MF = \frac{MP + PF}{2} \ge 5.0$

MP – Média parcial;

P1, P2 e P3 – Provas escritas individuais;

SE – Seminário em grupo;

MF – Média final;

PF – Prova final;

Será dispensado da prova final o aluno que tiver MP maior ou igual a 7,0. Caso contrário deverá fazer prova final.

A frequência obrigatória é de 75%. O aluno reprovado por falta não tem direito a fazer a prova final

EMENTA (Tópicos que caracterizam as unidades dos programas de ensino)

1- PROBLEMAS E MÉTODOS DA RESISTÊNCIA DOS MATERIAIS

Propriedades dos corpos reais; resistência e rigidez; hipóteses simplificadoras; propriedades mecânicas dos materiais; ensaio de tração e compressão; diagrama tensão-deformação; continuidade; elasticidade; isotropia; classificação das estruturas.

2- FORCAS EXTERNAS E ESFORCOS INTERNOS

Forças externas; esforços internos; estruturas isostáticas; esforço cortante; momento torsor; momento fletor; método das seções; diagramas de esforços internos; tipos de carregamento.

3- TENSÕES E DEFORMAÇÕES

Deslocamento linear; deslocamento angular; sistemas cinematicamente invariáveis; princípio das dimensões iniciais; deformação; estados de tensão e deformação; lei de Hooke; princípios gerais de dimensionamento de elementos de estruturas.

4- TRAÇÃO E COMPRESSÃO

Princípio de Saint-Venant; alongamento; hipótese das seções planas; estados de tensão e deformação; deformações longitudinal e transversal; módulo de elasticidade, coeficiente de Poisson; problemas estaticamente indeterminados.

5- TORÇÃO

Esforço de cisalhamento puro; Estados de tensão e deformação; Diagrama de esforços; Torção em barras de seção circular; Deslocamentos angulares; Rigidez à torção; Torção em barras de seção não circular; Eixos de seção vazada de parede fina. Transmissão de potência.

6 - FLEXÃO

Vigas retas; Esforços na flexão; diagramas de esforço cortante e momento fletor; tensões normais e de cisalhamento na flexão; fluxo de cisalhamento.

7- ANÁLISE DE TENSÕES E DEFORMAÇÕES

Carregamentos combinados; Estados planos de tensão e deformação; transformação da tensão plana; tensões principais; tensões cisalhantes máximas; círculo de Mohr para o estado plano de tensões e deformações. Extensômetros.

ASSINATURA (S) DO(S) RESPONSÁVEL(EIS)

Fonte: http://www.prograd.ufes.br/cam_grad/cam_grad_index.html