O conteúdo desse portal pode ser acessível em Libras usando o VLibras

Name: CLAUDIO BENINCA PIMENTEL

Publication date: 03/12/2024

Examining board:

Namesort descending Role
BRUNO VENTURINI LOUREIRO Coorientador
FABRICIO SOARES DA SILVA Examinador Externo
RENATO DO NASCIMENTO SIQUEIRA Examinador Interno
ROGERIO RAMOS Presidente

Summary: Oil production is generally associated with the co-production of water, and its proportion increases as wells mature. Flow disturbances such as bends, valves, and equipment, which are crucial for controlling production in a safe and sustainable manner, increase shear stresses during flow, leading to the formation of stable emulsions due to the breakage of water droplets dispersed in the oil. Stable emulsions are unfavorable for the oil and gas industry as they hinder the phase separation process (oil/gas/water), resulting in higher consumption of chemical inputs and increased maintenance costs. The efficiency of the separation process is associated with the Droplet Size Distribution (DSD). However, most DSD measurement instruments currently operate through sampling, which exposes the emulsion to the risk of altered characteristics during sample handling. In this study, a device is proposed for measuring DSD using in-line optical microscopy, obtaining DSD through a computer vision-based algorithm from micrographs of droplets dispersed in the emulsion. Experimental procedures for commissioning and performance evaluation of the device, comparing it with conventional DSD measurement techniques, are carried out in a laboratory-scale emulsion experimental circuit available at the Center for Studies in Oil and Gas Flow and Measurement (NEMOG/UFES). The results obtained with the device demonstrate its ability to provide accurate in-line DSD information for water-in-oil emulsions, though with a more limited measurement range compared to the laser diffraction technique. The results are assessed using dimensionless numbers such as Reynolds and Weber, allowing for extrapolation across different scales. The developed device stands out for its simplicity, speed of measurement, and capability for in-line monitoring of emulsions.

Droplet Size Distribution (DSD); In-line Optical Microscopy; Droplet Breakup; Computer Vision; Circular Hough Transform; Water-in-Oil Emulsion.

Access to document

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910

Conteúdo acessível em Libras usando o VLibras Widget com opções dos Avatares Ícaro, Hosana ou Guga. Conteúdo acessível em Libras usando o VLibras Widget com opções dos Avatares Ícaro, Hosana ou Guga.